The distribution of ligand-binding pockets around protein-protein interfaces suggests a general mechanism for pocket formation.
نویسندگان
چکیده
Protein-protein and protein-ligand interactions are ubiquitous in a biological cell. Here, we report a comprehensive study of the distribution of protein-ligand interaction sites, namely ligand-binding pockets, around protein-protein interfaces where protein-protein interactions occur. We inspected a representative set of 1,611 representative protein-protein complexes and identified pockets with a potential for binding small molecule ligands. The majority of these pockets are within a 6 Å distance from protein interfaces. Accordingly, in about half of ligand-bound protein-protein complexes, amino acids from both sides of a protein interface are involved in direct contacts with at least one ligand. Statistically, ligands are closer to a protein-protein interface than a random surface patch of the same solvent accessible surface area. Similar results are obtained in an analysis of the ligand distribution around domain-domain interfaces of 1,416 nonredundant, two-domain protein structures. Furthermore, comparable sized pockets as observed in experimental structures are present in artificially generated protein complexes, suggesting that the prominent appearance of pockets around protein interfaces is mainly a structural consequence of protein packing and thus, is an intrinsic geometric feature of protein structure. Nature may take advantage of such a structural feature by selecting and further optimizing for biological function. We propose that packing nearby protein-protein or domain-domain interfaces is a major route to the formation of ligand-binding pockets.
منابع مشابه
Investigation the Mechanism of Interaction between Inhibitor ALISERTIB with Protein Kinase A and B Using Modeling, Docking and Molecular Dynamics Simulation
The high level of conservation in ATP-binding sites of protein kinases increasingly demandsthe quest to find selective inhibitors with little cross reactivity. Kinase kinases are a recently discovered group of Kinases found to be involved in several mitotic events. These proteins represent attractive targets for cancer therapy with several small molecule inhibitors undergoing different ph...
متن کاملAnatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design.
Identification and size characterization of surface pockets and occluded cavities are initial steps in protein structure-based ligand design. A new program, CAST, for automatically locating and measuring protein pockets and cavities, is based on precise computational geometry methods, including alpha shape and discrete flow theory. CAST identifies and measures pockets and pocket mouth openings,...
متن کاملImplications of the small number of distinct ligand binding pockets in proteins for drug discovery, evolution and biochemical function.
Coincidence of the properties of ligand binding pockets in native proteins with those in proteins generated by computer simulations without selection for function shows that pockets are a generic protein feature and the number of distinct pockets is small. Similar pockets occur in unrelated protein structures, an observation successfully employed in pocket-based virtual ligand screening. The sm...
متن کاملAnatomy of protein pockets and cavities: Measurement of binding
Identification and size characterization of surface pockets and occluded cavities are initial steps in protein structurebased ligand design. A new program, CAST, for automatically locating and measuring protein pockets and cavities, is based on precise computational geometry methods, including alpha shape and discrete flow theory. CAST identifies and measures pockets and pocket mouth openings, ...
متن کاملComprehensive identification of "druggable" protein ligand binding sites.
We have developed a new computational algorithm for de novo identification of protein-ligand binding pockets and performed a large-scale validation of the algorithm on two systematically collected datasets from all crystallographic structures in the Protein Data Bank (PDB). This algorithm, called DrugSite, takes a three-dimensional protein structure as input and returns the location, volume and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 10 شماره
صفحات -
تاریخ انتشار 2012